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ABSTRACT ‘T. de te rmined  by the mater ia l  p rope r t i e s  of the me-
dium.  Whenever  such  a wave e n co u n t e r s  a change

This  is b a s i c a l l y a t h e o r e t i c a l  paper  i-noti-  in acous t i c  impedance (acoust ic  impedance is the
~~~~~ va ted  b y a p rob lem f r o m  s ei s m i c  da ta  p r o c e s s i n g  product  of rock dens i ty  and rock propogat ion

in oil explo ra t ion .  We develop  a K a l m a n  f i l t e r i n g  ve loc i ty ),  a ce r ta in  f rac t ion  of the incident wave
approach  to o b t a i n i n g  opt imal  smoothed es t ima tes  is re f l ec ted  upwards .  Seismic de tec tors  situated
of t he  so -ca l l ed  r e f l e c t i o n  c o e f f i c i e n t  sequence .  at the e a r t h ’s su r face  record the continual motion
This  sequence  con ta in s  impor t an t  i n fo rma t ion  of the ea r th  under the impact of seismic waves
about  s u b s u r f a c e  geome t ry .  Our t h e o r e t i c a l  p ro -  impinging  f r o m  below. Th is record ing  is pe r-
b lem is one of e s t i m a t i n g  w h i t e  plan t  noise f o r  f o r m e d  digital ly at a fixed sampling increment.
the s y s t e m s  d e s c r i b e d  in Eqs . ( I )  and ( 2 ) .  By The resul tant  set of d iscre te  observat ions is
m e a n s  of the  e q u a t i o n s  which  a re  de r ived  h e r e i n , called a ... ‘se i smic  t r ace ’ and constitutes a
it is poss ib l e  to compute f ixed - in te rva l , f i xed -  sample of a t ime ser ies . ”
point , or fixed- lag  optimal smoothed es t imates  of In 1954 , Enders  A. Robinson ( 4  and 5 )  pro-
the r e f l e c t i o n  c o e f f i c i e n t  sequence , as well as posed a convolut ion su mmat ion model to desc r ibe
respec t ive  e r ro r  cova r i anc e - rna t rix  in fo rmat ion ,  the signal  received by a seismic sensor. We
Our opt imal  e s t ima to rs  are compared with an ad wr it e th is model , as
hoc ‘p red ic t ion  e r r o r  f i l te r , “ wh ich h as r ecen t ly
been repor ted  on in the geop hy s i c s  l i t e r a tu re. z(k)  = VR (k) + n(k) ( 3 )
We show t h a t  one of our es t imat o r s  pe r f o r m s  at
least  as well  as , and , in most cases  be t te r  than , k

V (k) = ~ 5i ( j )V ~ ( k -j )  ( 4 )the p red ic t ion  e r r o r  f i l t e r .  B. j= l

INTRODU CTI ON whe r e YR Ik) is the noise f ree  seismic trace;  n(k)
is “measurement ’ noise which accounts for physi-

This is bas i ca l l y  a t h e or e t i c a l  paper rnoti- cal ef fec ts  not explained by V
R (k) . as ~~ell as

vated by a problem f rom seismic data process ing  sensor noise; k is short for time t.~; V ( i ) ,
i n oil ex plora t ion .  The theoret ica l  problem is = 0, 1. 2 I, is a sequence associated with the
one of es t imat ing white plant noise for  models basic seismic wavelet ( 2  and 5 ) ;  and ~(j ) ,

and = 1, 2 is the reflection coefficient  sequence.
This convolution summation model can be derived

+ 1) ~~ (k) +~~(k )  f rom physical princi ples and some simplif ying
assumptions, such as: normal incidence ( i .e. ,z (k )  = Hx(k) + v(k )
horizontal layering),  each layer is homogeneous
and isotropic , small strains , and , pressure and+ 1) = $~~(k + F~~(k)  

( 2 )  velocity (or dis placement) satisf y a one-dimension-
z(k) = Hx(k) ~v(k) al wave equation. 2 Sig nal V

R
(k) ,  which is record-

ed at the earth ’s si~r Eace , is a ‘superposition of
The res t  of th i s  sect ion b r i e f l y d e s c r i b e s  the -

-
‘ s e i s m i c  da t a p r o ces s ing pr oble m and its r elation 1 The reader interested in elements of the seismic* 

t o t h i s  t h e o r e t i c a l  p rob l em.
One of the mos t  u s e f u l  m e t h o d s  to p red i c t  prospec t ing  method and the seismic re f lect ion

the p resence  of oil is r e f l e c t i o n  seismology. On technique should see Anstey ( 2 ) ,  Chs. I and 3.
land , f o r  exam ple , an explosive is detonated be-  and Dix (j ) •
low the ear t h’ s s u r f a c e , im p a r t i n g  a pulse of 2 It is useful , for conceptual purposes , to draw
e n e r g y  in to  the  e a r t h . 1 As Wood and T re i t e l  (I) the analogy be tween a layered  e a r t h  sys tem and a
st~ i tc , “Th is  so ’ i r c  e pulse . . . is sp lit  in to  a la r g .  se quen c e of connected  lossless t r ansmis s ion  lines.
n u m b e r  of wa~~ -s t r a v e l i n g  a long  v a r i o u s  pa ths  At the t r a n s m i s s ion  line connections (discontinu i-

~ ~‘ ~,;ç~1i ~~~~~~ ~ . ~ 

5.
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wavel ,-t s  w}ii~ h a rc  r e f l e c t e d  f r o m  i i , , -  i n t e - r f a &  ,.~~ 

t o  t h e  f o l l o w i n g  i m p o r t a n t  s y s t e m  i n t e - r p r  t O t i u j i  f o r
of su b s ur f a ,  l a y e r s . The 0(j ) are  r , - l a t e , l  t o  i i , , -  s e i s m i c  t r a  m o de l :  s ignal  V R(k ) an be
i n t e r f a c e -  r e f l e c t i o n  and t r an sm i s s i , , n  c c I f i e  j en t s . tho’,~~~t of as t b  ou tpu t  of a l i n e a r  t i m e - i n v a r i a n t

The r e f le c t i o n  c. oef f i c ie ’n t  s e q u e nc e  of ten  has  sy s tem  whose  un i t  resp onse  is  V 4 ( e ) and in p u t
peak s at su b s u r f a c e  in t e r f a c e ’ s , and is o f ten  s e q u e n c e -  is t h e  r e f l e c t i o n  c o e f f i c ien t  S eq u en c e ,
assumed to be random and un o r re l a t ed  ( 5 ) .  It ~~( i ) .  (Fi g u r e  ).
can be re presen ted  g r a ph i ca l l y as a se q u en c e  of We shall  a s s u m e  that a s tate  space repre sen-
“ spikes ” wh i c h  oc c u r  at k = 1, 2 , . . . ( F i gure  I) .  We t a t i o n  of Eqs . ( 3 )  and ( 4 )  ~~~ our starting point for
would l ike to l e a r , ,  as muc h as  possible  about th~- p r ed i ct ive  deconvo lu tion . h o w  to obtain s u c h  a
peak va lues  of the i.’(j) sequence , inc lud ing  am pli- r ep resen ta t ion  f r o m  the ava i lab le  i n f o r m a t i o n  is
tude and t ime of o c c u r r en c e , so that  i n f o r m ation not t he subject  of the present  paper ;  but , is an
can be assembled about the su b s u r f a  e geomet ry .  im portant  topic that wil l  be d i s cus sed  in the- con-

TI noise  was not present , and we had n u m e r -  tex t  of th is appl icat ion in a f u t u r e  paper.
ic a l val u es f or seq u ences V

R (i) and V + ( i ) .  then For a sing le- inpu t s ingle-output  sys tem , a
the r e f l ec t io n c o e f f j c  lent  sequence could be recon-  mos t eff icient  st ate  space real i zation is the phase
s truc ted  by p a s s i n g  V R (i)  t h r o u g h an “inverse  var iable  canonica l f o r m  (1!):
fi l t er . ” Let V R (z) ,  V 3(z) ,  and ii(z) denote  the
z - t r a n s f o r ms  of sequences  V R (i) , V + ( i ) ,  and Ia(i) .  ~,(k + 1) = (k )  + ~ .i (k )  ( 6 )
Then , Eq. ( 2 )  can also be wri t ten , in t e rms  of
t hese z - t r a n sf o r m s , as VR (Z) = la( z ) V + (z ) ,  f r o m z(k)  = !i’x (k) + n (k)  ( 7 )
which we see that ia (z)  VR (z ) ( l/ v + (z ) ) ;  hence ,
when V (z )  is operated upon by the “ i n v e r s e  where x = col (X 1. X

2 
x ). b col (b b b ).

f i l ter ” I~7V~ (z) ,  we obtain 1(z) . h =  col ( 1 , 0 , 

— 1 2 fl

In the noisy si tuat ion , it is co mmon pract ice

and 5 )  known as predict ive deconvolution . The

to extract the reflection coefficient  sequence using 

(

1 
0 1 0 . . . 0

major component of this t echn i que is a digital

a tec h~ ique which was developed by Robinson ~ : : ‘

Wiener fi l ter , which requi res  correlat ion function
information. The following modeling assumptions o 0 0
a re as sociat ed with R obi nson ’s work ( 1 ) :  ( 1 )  the -a -a • -an n-I ’ ‘ 1laye red ear th  is a linear system , ( 2 )  the basic
seismic wavelet  is minimum delay ( i .e . ,  minimu m and x1(k) = VR (k).  Accepting Eqs . ( 6 )  and ( 7 )  as
phase),  and ( 3 )  the reflect ion coefficient sequence our startin g point for predictive deconvolution ,
is random and uncorrelated , instead of Eqs. ( 3 )  and ( 4 ) ,  we shall stud y the

Because the Wiener f i l ter ing approach to esti mation of the “white” reflection coefficient
pr edic t iv e deconvolut ion is li mited by these model- sequence , .1(k), by means of Kalman fil ter theory .
ing assumptions , which may not always be valid , Bay liss and Bri gham ( 7 )  and Crump ( 8 )  have
it is important to look for alternative approaches attempted to apply kalman fi l tering to predictive
which will permit more flexible modeling assump- deconvolution; however , they assume j (k) is a
tions. Kalman f i l tering is such an alternative, colored noise process and proceed along a route
and has recent ly begun to receive attention from which is quite different f rom the one we shall
geophysicists  ( 7 - 9 ) .  In this pape r we shall take. Ott and Meder (1) have attempted to
develop a Kalrnan fi l ter ing approach to obtaining estimate 1.1(k) via Kalman f i l ter ing;  however , as

~ptimal estimates of the reflection coefficient we point out in Section flT , their  estimator is an

~ç~ uence. ad hoc one , and does not per form as well as ours.
In order to use a Kalrn an filter , a state We shall imbed the fea tures  of Eqs. ( 6 )  and

space representation is required , in contrast to ( 7 )  in a more general setting; namely, we shall
the convolution summation representat ion in Eq. study the problems of estimating white plant noise
( 4 ) ,  which is the basis for use of a Wiener filter,  for the models and d~, which are given in Eqs .
From linear system theory ( 10 , for example), it ( 1 )  and ( 2 )  respectively. Optimal est imators  for
is well known that the output , y(k),  of a l inear , w(k) and w(k) are developed in Section U. The
discrete-t ime , time-invariant, causal system, relationship of zero estimates for w(k) to zero
whose input r (k)  is zero prior to time zero , is Markov parameters  is examined in Section III.

We relate our resul ts  to the Ott and Meder resultsk in Section IV.
y(k) = ~~~ r (j ) h ( k -j )  ( 5 )

j = O
OPTIMA L WHITE - PLANT -NOISE ESTIMATORS

where h( l )  is the unit function response of the
system. Comparing Eqs . ( 5 )  and ( 4 ) ,  we are led Int r oduction

Let us dir c~ t cu r  attentlon , for the t ime
Z(contd) being, at 

~l’ 
in Eq. ( 1 ) ,  in which  x E R ~ , a E R ~ ,

t ies) ,  waves are ref lec ted  and tr ansmit t ed , just ~ ERm , vE Rm , a nd i ( k )  and v(k )  ar ~ uncorr elated
as they are at the in ter faces  between earth layers .  gaus s ian  white sequence s  wi th  covarlances  Q and
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1 . r e  p . c  t i ’  ‘ l y Our  ob j e t i v e  is t u c , h t  sin  a

,nj r , i n c u r n - v a rj Sn  c e s t i m a t o r  f o r  t I .  ~ ,~
, ~~~~~ ~~~~~~~~~~~~ Opt r~~al Smoothed  k s t i r , e a t e s  of ‘s(k)

mc i -.e s e q u t -n c  c ( k ) .  — 
11.-re we c~~’ v t - l o p  a r,lor ~- u a t ful eq uat ion for

Let 
— i~~~. ( i  i i  t h ’-ee  1- q. ( 16 ) ,  and develop an equation

b r  th e  er r o r  c r , v arj a m e m a t r i x  ‘I ( k ( k  4 1), w h e r e
Z(~ ) ( z( I ) ,  z( 2 )  z ( j )  I , ( S )  I’

e I ,~~ F:V T i k ( k  C I )  — E r i ’ ( k ( k + l ) f l ( s a m e ’ ) ’ ) ( 17)
and ~( k ( j )  denote  the  m i n i m u m  v a r i a n c e  e s t ima te
of x ( k )  Wh i L h  u s e s all the m c a s c r ’ ment s  in Z ( j ) .  T h e o r e m  1. For  syste m .11,
F r o m  a f u n d a m e n t a l  r e s u l t  in e s t ima t ion  theory
( 1 2 , for  exa mp le) , it is wel l  known tha t  ~(k f lIk)= ~ ( k l k  ~- 1) = Q P 4(k + l L k ) K(k + l ) ’~(k + I l k )  (18 )
E 1x(k ‘ 1)  Z ( k ) I  and ~c(k + I l k  I )  E( ,c (k  + I)~ Z(k + I ) ) ,
and t h a t  ~ ( k + l ( k )  and ~ ( k F 1 l k f 1 )  can be computed and

f r o m  the K a lm a n f i l t e r , whose  eq u a t i o n s are:
+ I )  = Q  -QH ’[ HP(k + l lk ) H ’  + B.] HO (19)

~c ( k . 1 ( k )  ~~ ( k ( k )  ( 9 )

P(k 1(k) = ~P ( k l k  )~~
‘ + Q ( 10 ) Proof: (a )  Der ivat ion of Eq. (18) .  Meditch ( 12 )

K(k + 1) P(k .1 tk)H’EIIP(k + 1 k)H’ + RJ
1 ( 1 1 )  

der ives  the following equation for  ~ (klk  + 1):

‘I~k + 1 ( k ) z ( k + l ) - F 1 ~~(k + l ( k )  ( 1 2 )  ~ ( k t k + 1 ) = ~~( k t k ) + A ( k ) K ( k + h ) 2 ~( k + l l k )  ( 2 0 )

~(ke l l k+l) =~~(kfl(k)+K (k+lY ~(k+l (k) (13 ) where

P ( k t l t k 4 l ) = [ I . K ( k 4- I )H} P ( k + h l k )  (14 ) A (k)= P(klk)~~
’P~~(k+Ilk

) (21 )

Observe , f rom Eq. ( 1) ,  that z (k  4 1) depends Substitute Eqs. ( 2 0 ) and ( 1 3 )  into Eq. ( 1 6 ) ,  making
on a~(k) ,  w(k - 1) w( 1), whe reas  z(k )  depends c’se of Eq. (9). to show that
only on !5(k - 1), ~ (k - 2) cS( 1) ;  hence Z(k + 1)
de pends on j~( k ) ,  but Z(k) depends at most on i ( k lk  + I) ~I - 4 A (k ) ) K ( k  4 1)’~’(k + i lk )  ( 22 )

- 1). The sing le-s tage  predic ted  est imate ,
+ i (  k ) ,  in E q. ( 9 )  can be obtained directl y From Eqs. ( 2 1 ) and (10) .  it follows that

f ro m Eq. ( 1 )  by ope rat ing on both sides of the
state equat ion wit h the condit ional  expectation -l
operator E~ . ( Z ( k ) ) .  The t e rm E l w ( k ) l  Z(k))  = I - ~A(k) = OP (k + 1 ( k )  ( 2 3 )
E l  ( k ) 1 0 by v i r tue  of our preceding r emark  and
the fact  tha t  ~(k)  is a zero  mean process . Substitute Eq. ( 2 3  ) into Eq. ( 2 2 ) in order to

In or de r  to obt ai n the f i r st meanin gful min i -  obtain the desired expression for ~i ( k (k  C l )  in Eq.
mum v a r i a n c e  e s t ima te  of t ( k ) ,  ope rate on both (18) .

:;~:~ ~ ~~ +~r~”~ 
in Eq. ( 1 )  with the (b) Derivation of Eq. ( 19J. Signal ~ik +

the innovations process . m s known to be zero mean

E l x (k ~~1) I Z(k ~~1)) = ~E ( x ( k ) ( Z ( k + 1)) 
and white ( 13) ,  and ,

+ E k ( k ) ( Z ( k + 1 ) )  (15 ) El’I ’( k + 1(k) ~~( k + l ( k ) I r e H P ( k + l t k ) H +R.  (2 4 )

The last  t e rm  in Eq. (15 ) will  not be zero because Subsequentl y, Ej,~( k (k + 1)) = 0. which means that
Z(k + 1 )  depends on t (k ) ;  hence , we obtain the E(~~(k ( k +1 ) )  = E ~ a(k ) ) .E {~i ( k ( k + l ) )  = 0 , and therefore,
fo l lowing e s t i m a t o r  for  5(k) : that

~t ( k ( k + I ) =~~~( k 4 I ( k + t ) - $ ~~( k ( k + I )  (16 )— — * k ( k + l ) c E l W ( k l k + l ) U ’( k ( k + l ) l

Observe that  t h i s  is a single-s tage smoothed es- = EIt,c(k) - ‘~(k(k  + l))rw(k) - ~( k lk  + 1)) ’)
t imate  of ca(k )  which requines not only the optimal — — -— —
filtered estimate of x(k +1), but also the optimal - Ek~(k)~ ’(k lk  + 1)) - E~~i (k(k  + l)ac (k) )
single -stage smoothed estimate of x(k), for its + E{~ (kfk + I)~

’(klk + 1)) (25 )
imp lemen t  at ion.

By way cd these calculations we have estab- From Eqs. (18 ), (Il ), and ( 24) ,  it follows that
lished the (ac that minimum v a r i a n c e  e s t i m a t e s  of
c(k) will be opt imal  smoothed e s t i m a t e s .  In the El’~(k(k + 1)~

’(k(k + l)~ = QH’EHp(k + l(k)H’+ R]”1HQ
remaining paragraphs of this section we shall ex-  — —
plore ‘

~(k (k 
e 1) and its estimation error in more (26)

detail , obtain rec ursive equations for an optimal Next, we shall show that
L-stag’- smoethed e s t i m a t o r , ~ ( k j k  + £1, and its
e r r o r  c ov a r i a n c e  m a t r i x , and , sha l t  obtain compa- E f a ( k ) ’~” (k + Ilk)) .011’ . ( 2 7 )
cable ! r su t t s  (or e s t i mates  of w (k )  in d

~
, Eq. ( 2 ) .  —

644 
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R eca l l , t h a t

k i L - 1

+ 1(k) - H~ (k 1 1 ( k )  + v ( k  m t )  (~~~~ 
N ( k(1 .  C Z ) c ~Ql’ 1 (k 4 1 ( k ) ~~~ A ( i ) l c ( k  + L )  ( 3 7 )

where ~(k ilk) =x (k) -~~(k mi l k ). M.~-d it c h (12) amid 3

derives the following equations for ~( k 1(k) and

~
‘(k(k) EEqs. (5.63) and (5.64), res pectivel y ii. A(i) P(i (i )~~

‘P
4

(i4 1(11 1
12) :

Addi t iona l ly ,
( 2 9 )

— 

~5 ( k + L Y~d h 1 t t t  _ I) _ N ( k ( k + L ) [ H P ( k + t ( k + L - l ) H ’
and 

+R]N’(k (k+L) (39)

‘
~(Ic (k) = E l  - K(k)H]~~

’(k - ilk - 
where ~a(k(k) 

4~ ,
+ [1- K(k)H) uc(k -1) - K(k)v(k) (30) .~ -

.

Comment 2. Assuming the truth of Eq. (35 ),
Substitute Eq. (29 ) into Eq. (28), to show that then another representat ion for ~ ( k (k  + t), which is

nonrecursive, is
‘I’(k+l (k)=H ~

’
~
’(k(k)+H,c(k)+ v(k+ l) (31)

— 
ii(k (k+L)’ .  E N(k (k+j)’I’(k+j (k+j-l) (40 )

Observe , from Eq. (30), that ~
‘(k(k) does not 

— j 1
depend on s(k); it depends at most on i(k - 1); hence , . - , -— — This result is obtained by iterating Eq. (35) on

+ 1(k)) =E (~~(k)~~
’(klk))U3~)

’ 
Comment 3. Suppose we have a complete set of

i-OH ’ + E(w(k)v (k + 1)) measurements, z( 1) , z( 2) z(L), available.

=QH’ (32 Then we can use all of these measurements to
obtain f ixed-interval  estimates of um ( 0 ) ,  w( 1) , . . . ,

which is Eq. ( 2 7 ). w(L- l ) .  In Equation ( 4 0 ) ,  set k + £ = L and let
Final ly, to obtain $ ,j k (k  + 1) in Eq. (19), sub- 1..1,2,.. .,  L to obtain the following fixed-interval

stitute Eqs. ( 2 6 ), (18),  and ( 32 )  into Eq. ( 2 5 ) .  0 estimator ol plant noise:
Comment 1. It is interest ing to observe , from
Eq. ( 18 ), that the estimator  of white noise p rocess  

~ (L j ( L )  = N ( L - L ( L - L  +j ) ~~(L4 + j ( L - L  + j - I )  (41 )
aft), aft ~

- 1), is itself  a white noise process, — j=l  —
This is especially useful for the predictive decon-
volution problem that was descr ibed in Section 1. A fixed-point estimator of ~ (k) i s ~ (k(k  + L )
where the ref lec t ion coeffic ient  sequence , which is where k is fixed and £ is varied. Our formulas
to be es t imated , is white. Additionall y, we in Theorem 2 are in fixed-point format , and can
observe f rom Eq. (19 ) that $ (k ( k  + 1) �Q, which be used to enhance estimates at specific values of
means that we can expect to ~~o better  by using k.
~ ( k ( k + i )  then by using a zero estimator for w(k) . A fixed-lag estimator of w(k) is i’i i (k(k+L)

where £ is fixed and k Is varied. As such ,
t-Stage Optimal Smoothed Estimates of w(k) ~ ( k ( k + L )  utilizes the window of measurements,

Here we generalize the results of the pre- z(k + l), z(k + 2 ) , . . . ,  z ( k + L ) .  For example , ~ ( L ( l + L )
ceding paragraph , obtaining ~ (k (k  + 1) and $

~ (k (k  + £) . utilizes measurements z( 2 ) ,  z( 3 ) , . . . ,  z(L + 1),
These estimator equations are useful in that they whereas i(2 2 + £) utilizes the measurements z( 3) ,
permit us to comput e fixed-interval, fixed-point , z ( 4 )  z ( L +  2). A fixed-lag estimate of w(k)
or f ixed-lag smoothed estimates of the plant noise, would be useful in those situations where we decide
We define I (k (k  +L )  as follows : to use only a fixed length of data to obtain the

optimal estImate. 0
s ( k l k 4 L ) = E ( r ~( k I k + L ) - E I ; (k l k + L ~) )  Csame] ’)

Proof of Theorem 2: (a) Derivation of Eq. (35 ).
Letwhere

( 3 4 ) Z ( k + L _ l ) ” ( z ( l ) ,  z ( Z ) . . . . ,  z ( k + L - ’ l ) )  ( 4 2 )

Theorem 2. For system .‘ 
and

~i(k(k+ L) =~~(k (1e  t - 1)-i N(k (k  + £) ‘I’(k + L ( k + L  - 1) Z(k + L ) =  ( z (  I ) ,  z( 2 )  z(k + L ) )  ( 4 3 )

( 35 ) 
__________________

where ( = 1 ,2 ~(k$k)~~0 , 3 i
1 ,fl A(i)=A (l)A(2)... A(I-l)A(I).

N ( k t k + I ) = 0 P  ( k + l j k ) K ( k + I )  ( 3 6 )
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I
Ope r ..t .  on i , , c t l e  s t i e s of the-  s t a te  t u 1t c a t j u r e  ~~ Ec~. l i t ’  . t u st  ‘

~~ is a w h i te  s , c 4 ,em e ,
( 1 )  w i t h  o p e rat o r s  E j  ‘ Z(k + L — 1)1 ancI E (  ‘ Z ( k  + 1 ) 1
t o  o bt a i n  tht - f ol i o s  r u g  r e s u l t s : E( ’i ( I .  I J I k  C ) -  lj 7 ’ ( k m i l k  I L — I ) )  0

‘ (lc ( k 2 - 1 )  - ~.(k + I ( k  (— 1)  - ~~~( k ( k  I 2 - 1 )  ( 4 4  ) f u r  all j * £ h en c e , us ing  Eqs . (40) and (34) , it is
s t ra ig h t f o r w a r d  to show t h a t

anti
E(’ii(k(k C A - l ) ’I” (i-~ + 2 1 k  + 1 - 1 ) )

~( k ( k  m i )  r~~(k m- l ( k  L)  - (~c ( k ( k  t L )  ( 4 5 )  
E 1e ( k ) 7 ’ ( k +  L ( k  + 1-1)) (54 )

Meditch ( 1 2 )  d e r i v e s  the fo l l owing  equa t ion  E E q .
(6. (‘0) ire 12 ] fo r  ~(k(j), k + I , k + 2 , ... : The quant i ty  on the r ight -hand side of Eq. (54) is

eva luated in A ppendix A , as

~ ( k j j ) ~~~ j k ( j - i ) + M ( k ( j ) ~~( j I j _ l )  ( 4 6 )  
$~5.5

( L j L _ 1 ) = N ( k I k + L ) 1 H P ( k + L l k + L _ l J H ’+ Rj  (55)

where
l i - i results in Eq. (39).M ( k l j ) =  II A(i)] K(j) 

Apply Eqs. (54) and (55) to Eq. (53) to obtain our

Optimal Smoothed Es t imates  of w(k )
We now di rec t  our a ttent ion at es t imat ion ofWe use Eq. ( 4 6 )  to obtain express ions  for

c ( k ( k + L )  and ~ k m - l ( k + i ) ,  as f ollows: w (k) in d~, Eq. ( 2 ) ,  when ~~~~~~~ q~~n .  Signal
~(k) is white with covariance

~ ( k ( k  m l )  ~ ( k ( j )  ( 4 8)  Let ~.c (k (k + 1) denot e the minimum-var iance

= k + ~ 
i -s tage smoothed estimator of w(k), and $Jk(k + 1)
it s er r or covariance matr ix,and

(49 ) $ J k k + L ) E i N ~i ( k I k + L ) - E 1 % Z~( k ( k + L ) ) ] [ s a m e J ’)

k = k + l , j = k + L  (56 )

Theorem 3. For System d2 ,Substitute Eqs. (48) and (49), using Eqs. (46).
( 4 7 ) ,  and ( 4 4 ) ,  Into Eq. ( 4 5 )  to show that 

~~ k ( k + L ) = ~~ ( k ( k +  I- l ) + N  ( k (k +  L) ’i’(k + L ( k +  ~~
.. 

~~

k +L-1
~( k ( k + L )  ~.~~( k ( k + L . l )  + [i - IA(k)] ti A( l)  (57 1

i = k + l  where 1= 1, 2 

( 5 0 ) N ( k ( k + 1 ) Q r ’P ’1( k + l ( k ) K ( k + l )  (58 )
w 1

A ppl y Eq. ( 23 ) to Eq. ( 5 0 ) ,  and define mat r ix  k +L - l
N ( k t k  + I) as in Eq. ( 3 7 ) ,  to obtain our Eq. ( 3 5 ) .  N ( k (k  + 1) = Q1r

’ P 1
(k + 1(k) U A ( i )K ( k  + 1) (59 )

We define N ( k ( k )  as in Eq. ( 3 6 )  so as to be able W i k +  1
to obtain t~( k ( k + l )  f r o m  Eq. ( 3 5 )  that  is consistent
wi th  our e a r l i e r  r es u l t s  in Theorem 1. and A ( i )  is de f ined  in Eq. ( 3 8 ) .  Additionally,

(b) Der ivat ion  of Eq. ( 3 9 ) .  From Eq. ( 4 0 ) ,
we see that E1~~( k ( k + L ) J 0 ;  subsequent l y, S J k l k + L ) = $ ~~

( k I k + L _ I ) _ N
~~( k I k + L)~ H P ( k + L ( k + L_ 1J 1 f ’

E(~e ( k ( k f L ) ) = O , and
+ R ] N ’ ( k k + L) (60 )

$ ( k ( k + L ) = E ~~~( k ( k .L ) t u 1’( k ( k + L ))  (51 ) w
a

where $ ( k ( k ) G Q 1.wwhere , f rom Eqs . ( 3 4 ) and ( 3 5 ) ,
Proof : System I , in Eq. ( 1 ) ,  can be made

+ 1) ~ ( k ( k  + 1- 1) - N ( k (k  + L) ’~’(k i l k  + 1- 1) C 52) equivalent to system d
~, in Eq. ( 2 ) ,  by setting

ic(k) = rw(k), in which case
Subs t i tu t e  Eq. ( 5 2 )  into Eq. ( 5 1 ) ,  u s i n g  Eq. ( 2 4
for k = k  4-1 , to obtain the following express ion for  c ( k ( k + t ) = r % ~( k ( k + L )  (61 )
$ ( k ( k + L ) :
a

and
, ( k ( k + L ) = $ ( k l k + L . l ) i. N ( k l k + L ) r H P ( k + L ( k + L - l ) H ’

Q:rQ 1r ’ ( 6 2 1
+ B . ) N ( k l k + L )  ( 5 3 )
_ N ( k ( k + L ) E ( ~~( k + L ( k + L _ l ) ’ ( k ( k + L - 1) )  All of the resu l t s  in Theorem 3 follow upon sub-

s t i t u t i o n  of Eqs . (61 ) and ( 6 2 )  int o the respective
_ E J ~~( k J k + 1 l) ~~

’ ( k + i I k t 1 l ) IN ’( k ( k  I L )  Theo rem 2 equa t ions .  a
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C . r c o c e- . .t  -1. Ire  t h e  r e ’fle- t l i o n  s . i~~ r . i y p r e c L l ~ ire ( . u r o l l a r y l. U n d e r t i e  c u i d i t i e n s  cf T h i - o r e - r i e  4 ,
d.- — ~ r e ~~- d in  Sc. I r o n  I [ s . -. Ee 1s . ( f i  an d  ( 7

a s , a la r  — — — t i ~.- r. - f I e ( t i e , r e  c c c  ( ( I ’  nI 4 ( k l k  I i )  0 I r  2 1, ? .i ( ‘ ~~~~~i 
- 

-

w
a c - G u . ce.  , .._~k 1; h en ce - , tire ’ r e - s u i t s  in Tir ~ or ,  in 3
are -  t i c - n. S ~l c i c  h a r e  app li  a b l e  to tha t  p rob l em.  The proo f of (h i s  s i mp le r ’- s  n i t  f o l lo w s

d i r e c t l y f r r i r  the 1:.. t that , b e cause ’  of Eq. ( 6 ) ,
ZL1(O M A R K O V  P A R A M E TE R S CASE ~~( k ( k  + LI  = w ( k )  f o r  I - 1 , 2 

(~ t t  a i i  Me der ( 9 )  cons ide r  an c-x anc p le w h i ch  Coro l la ry  2. U n d e r  the  c o n d i t i o n s  of T h e o r e m  4 ,
they s ta t e  . . . is of specia l  i n t e re s t  for  se i smic  .

e~ cp l or a : i on  . . . ‘. It is a one d im ens ion a l  damped -1 ( k j k  +j  + 1 )  Q -Q ( I l ~~
3 F) [HP (k  i i  4 1 1 k  +j ) H ’

w 1 1h a r m o r , i c  osc i l l a tor  whi  h is excited by im pulses
of r a n d om  in t e n sj t ~ in random t ime in s t ances .  + R] 1(H~~F)Q

1 
( 6 9 )

For  t h e i r  example
Proof : From Eqs. ( 60 )  and ( 6 8) ,  it fol lows that

f l  
= 

1 
+ ‘~~(k) ‘I ( k ( k + j + l ) Q - N  ( k ( k + j + l ) t H P ( k + j + 1 ( k + j ) H ’

~~ (-~~T I - n T )  (x 2 (k))  SET)

x ( k + i )  I T x (k) 
( 0  

\

I w

+ R ) N ’ ( k ( k + j + 1 )  ( 7 0 )w
( 6 3

An equat ion f o r  N ( k ( k + j + l )  is developed in

( 

x
1

(k) \ A ppendix B , Eq. rB -b ). Subs t itu te that equat ion
z ( k ) . ( l  0 )  )+ v(k)  (64 ) into Eq. ( 7 0 ) to obtain the des i red  result  in Eq.

x 2
(k ) ( 69 ) .

If one subs t i tu tes  the +, F, and H mat r i ces  for  t h i s  AN AD HOC ESTIMATOR
example into Eqs . ( 57 )  and ( 5 8 ) ,  for 1= 1, he
fi nds tha t  . ( k ( k  m l )  = 0. Addi t iona l ly .  ~a ( k ( k  + L ) m ~ 0 Ott and Meder ( 9 )  def ine a ‘ pred ic t ion er r or
for  £ � 2 . This  resul t  sugges t s  that  perhaps  the f i l t e r ’ for £ (k ) ,  in sys tem I ,  as the d i f f e r ence
s t r u c t u res  of # , F, and H establish a f i r s t  va lue  between ~ (k + i ( k  +1 )  and i(k +‘l ( k ) .  In th i s  section ,
of I fo r w h i c h  ~~( k ( k  + 1) s O .  we shall examine the i r  est imator  and compare its

Let  us take a c loser  look at N ( k ( k  + 1) in pe r fo rmance  with our est imator ~(k ( k  + l ) ( Section U) .
Eq. ( 5b c , Subst i tute  Eq. ( 11) into ~ q. ( 5 8 ) .  to We shall  also stu dy the consequences of a pre-
shcw that diction e r ror  fil ter for es t imat ing w(k) in system

N ( k j k  - 1) Q
1(HF) ’ tHP( k 4 - l ( k ) H ’ + R) 1 

,S~, As such , this section serves to i l lustrate
( 6 5 ) some of our theoretical  resul ts .

Observe  that  N (k (k  + 1) depends on the Markov Ad Hoc Est imator  of ~ (k)
pa rame te r  H (‘f5 ).  In the Ott/M eder  example Combine Eqs. ( 1 3 )  and ( 9 ) ,  to show that
HF =  0.

We genera l ize  the preceding observation in ~ (k + l ( k  + 1) t i ( k(k )  + K(k + l)2’(k + 1(k )  (71 )
the following theorem, the proof of which is given
in A ppendix B. in which we recal l  that 2’(k + 1(k )  is the white

innovations process.  Comparing the s t ruc tures  of
Theorem 4. For system d~, if HT i-J$F ... = Eq. (71 ) and the state equation in Eq. ( 1 ) ,  we

0, and H$ 3F s 0, then 
define a “ prediction er ror  fil ter ” for w(k) .  denoted
here  as ~~(k) ,  as

~~(k (k +L ~~~O for 1= 1 , 2 j ( 6 6 ) 
~~(k)~~K ( k + 1 ) ~~( k + l ( k )  ( 7 2 )

and Observe that ui 1(k ) is a white est imator of s(k),

~‘(}c J k +j  + 1)~ 0 . ( 6 7 ) and that  ~1
(k) x(k + 1( k  +1 ) -~~(k + 1(k ) .  Observe ,

also , that ~ (k) is not an optimal est imator of ak) ;
it h as mere ly  been defined as in Eq. ( 7 2 ) .  AsT}.is t h e o r e m  sta tes that if the f i r s t  j Markov such , we refe r to the  prediction error  f i l te r  as anpa rame te r s  are zero , then the f i r s t  non-zero ad hoc est imator.est i mator  of i~’(kJ i s the one which looks j 4 I points

We shall  compa r e ~~(k) wi th ~ (k (k  + 1). Letinto the f u t u r e . •) (Ic ) denot e the er ro r  covar iance  matr ix  for the

_________________

Some consequences of Theorem 4 are given hoc es t ima tor  ~~(k) ;  i. e. ,
in the f o l l o w i n g co ro l l a r i e s  to that  theorem.

Equa t ion  ( 6 3) is obta ine d by d i s -r e t i z i n g  the 
= E( 

~1~i1(k) - E( ’~1(k) 13[sarne) ’1 ( 7 3 )

equat ion 
~~

t ) +
~~~~

( t )+
~~

X ( t ) = c u
F~~

( t) ,  a s s u m i ng t h a t  w her e
t - t  T is smal l.

k - I  It
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• ( k )  -~~1U-- m  ( 7 4  whe -re - , U :  P(lc + I t I - . ) .

1- r o r r i  Eq. ( 7 2 j ,  it t o l l o w a  t h a t  E(  1
1

( k )  1 0; fcc - re. c T h e - o r e - n e  6 . For system 
~2

’
- 0 , s e  t h a t  

( k ( k  i ) ~~~$ ( I t )  ( 8 2 )
W WI

~ 1 1
( k )  F . I ~~1(k ) I ~t k ) )  ( 7 5 ~ 

The proof of t h i s  r esu l t  pa ra l l e l s  the proof
S u b s ti t u t e  i~~~s , ( 74 ) and ( 7 2 )  i n t o  Eq. ( 75 

~, ~~~~~ 
of Thoec r em 5, and is left  to t he reader .  Once

E qs . ( 2 4  ) ,  ( 27 ) ,  and ( 11) to show tha t  again , we see that  we ca n expect to do at least as
good us ing  our  si ng l e - s t age  smoother , ~‘(k( k + l ) ,

-~ (Ic ) 0 . PH ’ (H P}l ’ + R) 1HP -Qu ’ UIPH ’ + R) ’HP instead of the predic t ion e r ro r  f i l te r ,
ai Finall y ,  let us recons ider t he ha rm on ic

- PH~~ HPH ’ + R 4HQ ( 7 6 )  osc i l lat or ex a mple conside r ed by Ott and Meder ,
whose equa tions are given in Eqs . ( 6 3 )  and (64 ).

in w h i c h  P is s h o r t  for  P(k 4 - l i k I .  Recall , f rom our discussions in Section IU , that
HF 0 for their  system. Under this condition ,

Theorem 5. For sys t em 11 . $ (k) in Eq. (81 ) reduces to
Wi

$~ ( ( It + I) $ 1(k)  ( 7 7  $ 1( k ) Q
1+ (rT~~

1r ’PH ’(HPH ’ + R)~~HPF(FT) 4 
(83

Proof : From Eqs . ( 7 6 )  and ( 1 9 ) ,  it f ollows that which means that , for their  example ,

$ ( It )  - $ (k ( k  + 1) = (P  - Q ) r H ’(HPH ’ 4- R)~~H 3(P  -Q)  ( 7 8 )  $ (k) �Q
1 (84 )i i  

~ wl
Matrix R >0 , and (HPH ’+ R) >0  for the inverse of From an estimation error-covariance point of
(HP H ’ + R) ,  which  is used to calculate K(k + 1), to vie w, Eq. (85 ) implies that the prediction error
exist. It is s t r a ig h t fo rward  to show, the re fore , f i l ter  performs no better , and usually worse , than
that the r ig ht - h a n d  side of Eq. ( 7 8 )  is positive the zero estimator of w(k) I Why bother with ~ (k),
semi .d i f in i te ;  hence , the t r u t h  of Eq. ( 7 7 ). 0 when 0 appears to be a better estimator of

The si gn i f i cance  of Eq. ( 7 7 )  is that  It implies The answer to this question is related to the seismic
that one will  u sual ly obtain better performance with data process ing problem described In Section I.
our single-stage estimator, ~(kjk + 1), then with Ott We are Interested in a t ime-series for the reflec-
and Meder ’s ad hoc predicti~ •eror  f i l t e r ;  and , tion coefficient sequence. By examining peak value s
that one cannot do worse u ‘6 

,~ur estimator and their  times of occurrence, we can inf e r some
rather than the prediction error f i l te r.  things about subsurface geometry. Even a time-

series estimate such as s~ (It) will have peak values
Ad Hoc Estimator of �i’(k) (for low signal to noise ra~ios) that make ~ (k)

Now compare the structures of Eq. (71) and useful [see 9 for some numer ica l  examples ’that
the state equation in Eq. ( 2 ) ,  to obtain the follow- support this statement]; whereas, a zero estimate
ing “ correspondence ’ : of ~‘(k) does not contain any of this useful informa-

tion.
F~ 1(k)~~K(k+1

)2’(k+l (k) (79)

CONCLUSIONS
In this equation , c~1

(k) denotes the prediction error
f i l ter  for w(k) .  Unfortunately, Eq. ( 7 9 ) is an We have demonstrated how an important
overdetermined system of equations; i. e .,  application can be interpreted , f rom a state equa-
dim r~ (k) = n and n > d i m  ~ (k) = q. We use the tion point of view , as one of estimating plant noise.
pseudo-knverse of F, (rT)~~T’, to obtain the follow- Our emphasis In this paper has been on the
ing ad hoc predict ion e r ro r  f i l ter  for ~~(k) :  theoretical development of white, plant noise esti-

mators. We have shown that such estimators
~~1

(k) ~ (F’F~~~F ’ K(k + l) !(k - m - l ( k )  ( 80 ) provide us with smoothed estimates of the plant
noise. By means of the equations which are

Let $ (It ) denote the e r r o r  covar iance mat r ix  derived in the main bod y of this pape r , it is
for s~ (k) , ~~~fined analogously to (It ) in Eq. ( 7 3 ) .  possible to obtain fixed-interval , fixed-point , or

~~ roceeding as we did for  the~ calculat ion of f ixed-lag optimal smoothed estimates of white plant
$ (It) in Eq. (76). it i5 strai gh t f o r w a r d  to show noise , as well as respective error covariance-
t~~t matrix information.

We have also compared our optimal est imators
with art ad hoc “prediction e r ror  filter , ” and h&ve
shown that better performance can be attained w ith

-Q
1F’H ’ (HPH ’ + R) 4HPF(F’ ’)~~ our est imators.

Much work remains to be done , including
- (~‘r ) ’r~ PH HPH I+ R)~~HT Q

1 (81 ) appl icat ion of our srr-roothers to real seismic data;
study of computational requirements of our
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w he re a m c m l  (~~9) :
I

4~~(k , k - t ) ~~~[ t — K( l-- ) 1 l ) t  ( A - I l ) )  ~.- ( k ( k  F L )  ~-i N
~~~

( k t k  • ) ( k  • i ( k  • i — l j  ( f l — i )
i~ 1

l ie. s o l u ti o n  ot Eq .  ( A — 9  ) (or ~ (k ( k )  i~ - ( C h a p t e r  Lemm a. For sy s t em  d if 1C~ 
r -

I , !±) z O , then N ( k ( k  + q )  0.
k

- i~ (k ,o)~ (o(o) ~~ ~~~ U t $ - ( j  ~ 
Proof : From Eq. ( 5 0 ) .  wi th  2 = q ,

- K ( i ) v ( i ) ~ (A - l i )  N ( k (k  + q) 01r
’P ’(k + 1(k) ~ 

A (m )  K(k + q)  (8-2)
m z k + l

w h e re
The following equation ( 1 2 ) .  which is a well-known

-l° (k , i i  ~ k - i )  ,v ( k _ l , k - 2 )  . . . •~ (i~ l , i) (A- 12 ;  a l t e rna t ive  to Eq. (14 ) .  is used in our proof :

Set It = It + 2 - 1 in Eq. (A -11) and observe that  the  P~~(k + 1 (k )  P 1(k + l ( k  + 1) - H ’R 1H (8 3)
onl y ter m which  depends on i1(k) ,s the one for
which  i = k 1; that  t e r m  is Substitute Eq. (B-3)  into Eq. (8-2) ,  and assume

1-11=0 , to show that
+ 1- 1, k + l ) t ~~( k + l , k ) $~~ ’j i(k) . k + q - l

which  ca n a l so  be w r itt en as 
N (k (k  + q ) = Q 11”P4(k + l (k  + 1) Ii A(m) K(k + q)

m=k+l

+ 1- 1, k) ~~
1si(k) . Based on these  resul ts , 

(B-4)

evaluate  the ri gh t -hand  side of Eq. ( A - 8 )  to show or ,
that  k + q - l

N ( k (k  + q) = Q 1r
’P~’(k+lIk+ l)A(k+l )  Ii A(m) K(k + q)

2 .  1)  = H~~$ °(k * 2 - 1 , I c )  , (A -13) rn=k+Z
(8-5)

which is Eq. ( A - 3 ) .  Substi tute Eq . (A-b ) into
Eq. (A- 12)  to obtain Eq. ( A-4 ) .  Substitute Eq. ( 3 8 ) ,  for i = k  4-1 , Into Eq. (B-5) to

(c )  Derivation of Eq. (A-5) .  show that
Set k = k + j  in Eq. (14), to show that k + q-.l

N ( k + q ) = Q 1r
’~~’P~~(k - i - 2 ( k + 1)  Ti A(m) K(k -4- q)

I - K(k j)H = P(k *j  (I t  +j ) P 4
(k + j(k +j - 1). (A-14) m k+2

(8-6)
Subst i tute  Eq. (A- 14 ) into Eq. (A - 4 ) ,  take the
t ranspose  of the resul t ing expression , and use Eq. Substitute Eq. (5-3), for k = k - l 1, into Eq. (B ..6),
( 3 8 )  to show that assume H$F = 0~ and , substitute Eq. (38 ), for

= k + 2, into the resulting expression, to show that
$‘ ( 2 ( 2 - i )  = Q P 1(k + l ( k ) A ( k  + l ) A ( k  + 2~ . . . A(k + 2 - 2 )  k + q — 1

*p(k + 2-  1(k + 2 .  l)~~’H ’ ( A _ I S )  
N ( k ( k + q ) = Q 1r

’(+
2

) ’P ’(k + 3 ( k +  2) II A(m)K(k  + q)
m=k+3

(8-7)
Next , using Eq. ( i i ) in which It = It + 1, write
N ( k ( k + L )  as Continue this development a~ssuming HI 2

1~=0 .  then
= 0 and then H$~~ I’ 0, to show that

N ( k ( k  + 2) = QP 1( k + 1(k) A(k + l ) A ( k  + 2 ) . . .  A(k  + 2- 2)
t P(k + 2 1(k + 2 . 1) $ ‘H ’t HP (k  + L ( k  + 2- l)H ’ N (k(k  + q) = a r m (,~~4) l p4(k + q ( k  + q -1) K(k + q)

(A-l6)  (8-8)

Compar ing  Eqs. ( A - i s )  and (A - 16) ,  we see that Finally, substitute Eq. ( 11), for k = k + q ,  into Eq.
(8-8) to show that

N ( k ( k  + 2 = ç~( L I L -  1)CHP (k + L ( k  + 2- I)H’+ R~~
1 , 

N ( k k + q ) = Q
1r

’($~~
1) ’H ’tHP (k + q ( k  +q  - l)H ’+ R)~~(A - l 7 )

(8-9)
f r o m  which Eq. ( A- 5 )  follows.

~f f l $ q-1
1~ = 0  as assumed, then N ( k ( k + q ) = 0 ,

APPENDIX ft which completes the proof of the Yemma.

Proof of Theorem 4 Proof of Theorem 4. Theorem 4 is proved by
The fol lowing nonrecu r s ive  equat ion for  repeated application of our lemma , as follows. If

1) is easily obtained f r o m  Eqs. (40) ,  (6 !). HF = 0, then N ( k l k  + 1) = 0, whIch means thatw
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s~(k ( It + I )  0 sec Eq. ( 1 3— 1 ) ) .  If i r  r 0 and I I  ~ 0 .
N ( k ( k + Z ) = 0; but , since H F = O , N ( k ( k + l ) = 0  asw - - - -well; he nce w ( k ( k  + 2) 0. Proceeding in th is  - -lm a n n e r , we curi e. luej e that  if ft = H l~~ .. . = H$ 3 F

0 . t hen N ( k ( k + j ) r N  ( k ( k + j - 1 ) = . . .  N ( k ( k + 2 )
N ( k ( k  • 1~~~ 0; hence , 

w
~(k I k  + j )  = 0 .  In s~ ort , we

have shown that , under the cr indi t ion s  of Theorem
4 , Eq. r (  ) is true.

Next , set q i + I in Eq. ( 13-9) to  show tha t

(8- 10)

Since H+~F ,  0, N (k (k  +j  4- 1) $0 ;  hence , under the
conditions of the~~heorem ,

~~ ( k ( k + j + l ) = N ( k ( k + j + 1 ) ”
~ ( k+j + 1~~k +j ) $ 0

(B- l i )

which proves Eq. ( 6 7 ) ,  and , completes the proof.
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